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Although modern statistical computing will often be the method
of choice for analyzing kinetic data, graphic methods provide an
important supplement that ought not to be neglected. Residual
plots, or plots of differences between observed and calculated
values against variables not expected to be correlated with these
differences, permit a rapid judgment of whether data have been
correctly interpreted and analyzed. The rapid increase in the fre-
quency with which artificially modified or mutated enzymes are
studied is making it less and less safe to assume that enzymes
are stable under assay conditions, and there is thus an increased
need for methods to check for enzyme stability, and a method
for doing this is briefly described. Finally, the Scatchard plot (to-

gether with the Eadie–Hofstee plot) is used as an example to is given below to illustrate how automatic analysis by
discuss the dangers of publishing derived information unaccompa-
nied by any primary data. q 2001 Academic Press
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This article discusses methods of detecting errors in
the interpretation of kinetic data. The methods are not
in general new, and some are not specific to enzyme
kinetic experiments, but as they are little used in the
modern literature and seem to be little known, while
being at the same time easy to apply and rich in infor-
mation, it appears useful to bring them to the attention
of a wider range of biochemists.
Model testing as such is, of course, within the domain
of statistical analysis, and there are a number of sources
of information for applying it to enzyme kinetic data,
beginning with the influential articles of Cleland (1).
However, this approach is not discussed here as it has
not significantly changed over the years; the main
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points necessary for modern users are to be aware (at
least qualitatively) of the assumptions that underlie
the statistical analysis and to be aware also that they
are not always true (2). By contrast we shall be con-
cerned with methods that require no detailed mathe-
matics and can readily be applied to published graphs
(or even to graphs displayed on a screen during a lec-
ture) without access to the numerical coordinates of
the observations. More generally, this article argues for
more reliance on common sense and graphic analysis
and less on automatic analysis performed by computer:
an example (out of many that could have been chosen)
computer can lead to results that are obviously wrong.
As this approach runs strongly counter to the trend in
biochemical practice over the past 20 years, the next
section illustrates that it has support from some of the
main authorities in modern statistics.

RESIDUAL PLOTS

Statistical Background

Senior biochemists with some experience in the use of
computational methods for analyzing data of all kinds
often respond to the advocacy of graphic methods with
the opinion that the graphic approach has been com-
pletely outmoded by the universal availability of com-
puters, and that established statistical methods provide

the informed experimenter with all of the information
necessary to proceed. Widespread as this opinion is
among scientists, it is important to realize that it is
not shared by the people who revolutionized statistical
practice and theory in the second half of the 20th
century.
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For example, Chambers and colleagues (3) wrote that
“There is no single statistical tool that is as powerful
as a well-chosen graph. Our eye–brain system is the
most sophisticated information processor ever devel-
oped, and through graphical displays we can put this
system to good use to obtain deep insight into the struc-
ture of data.”As this statement appeared in a book
about graphic methods it could perhaps be regarded as
biased, but it is echoed in other authoritative sources,
for example: “Graphs are important” (4), or “Mechaniz-
ing . . . seems dangerous. The user needs some contact
with what is going on” (5). This last example is perhaps
not easy to understand out of context, but the point
being made (which underlies the whole book from which
it is quoted) is that data analysis demands constant
interaction between analyst and computer; major deci-
sions cannot be left to the machine.

The author common to the two sentences just quoted
was also the originator of the word “bit” (in the sense of
binary digit) and inventor of the fast Fourier transform,
something that ought to convince even the most skepti-
cal reader that a belief in the usefulness of graphs is
not incompatible with long experience with computing
and deep understanding of its principles.

Residual plots constitute the major focus of this pa-
per. These are plots of the differences between observed
and calculated values (of a rate, for example) against
the calculated value or some other convenient variable,
which in enzyme studies may often be elapsed time or
the concentration of substrate. They are widely advo-
cated in the statistical literature, but although they
have sometimes been recommended to biochemists
(e.g., 6) they remain very little used by them. As I argue
in this article, residual plots allow various types of error
in the design and analysis of experiments to be elimi-
nated before it is too late. In addition, it is useful to
cultivate the habit of imagining what a published graph
would have looked like if the authors had displayed
residuals instead of measured values; this often allows
a rapid assessment of the credibility of the interpreta-
tion offered.

For the statistical background it is useful to consult
an article in which Anscombe (7) gave an example of a
series of four experiments that when analyzed by classic
methods give numerically identical estimates of the fit-
ted parameters together with numerically identical es-
timates of their variances, even though the underlying
error structures are grossly different. Only one of these

experiments would look at all odd in an inspection of
the tabulated numerical data; the other three would
look more or less the same if they could only be com-
pared in the form of three tables of numbers, such as
one might obtain from computer analysis. Nonetheless,
as Anscombe pointed out, the differences leap out at
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the eye in even the most cursory graphic comparison of
the residuals. His example was constructed for straight-
line data, but I have used it as the basis for a similar
comparison between results that one might obtain in a
simple kinetic study of an enzyme (pp. 6–8 in Ref. 2),
at the same time extending it to illustrate a fifth type of
error structure to add to the four considered originally.

Examples from the Literature

Many graphs continue to be published that illustrate
the reasons for plotting residuals. Recent examples of
lines that manifestly fail to fit the observations that
accompany them can be found in the major journals
of biochemistry (8–11). Consider Fig. 1a, for example,
which shows a Scatchard plot from one such paper re-
drawn as a generic plot of a dependent variable y as a
function of an independent variable x. Even in the origi-
nal coordinates it is obvious that the observations do
not agree with the implied model, not only quantita-
tively but also qualitatively, given that the observations
clearly demand a curve although a straight line is
drawn. When the points are replotted as residuals (Fig.
1b) the same conclusion emerges even more clearly, as
the points follow an obvious trend and are very far from
being distributed at random (quite different from those
in Fig. 2a below). In general a residual plot always
magnifies deviations from expectation, and thus always
makes it easier to judge how satisfactory the proposed
model is. For this reason it is often helpful to imagine

how the equivalent of Fig. 1b would look when all that
is immediately available is the equivalent of Fig. 1a.

The line shown in Fig. 1a was obtained by fitting the
data by regression analysis, but it is clearly not correct.
Many similar examples could be given from the current
literature, and all of them illustrate the important point
FIG. 1. Example of a straight line drawn through points that lie
on a curve. The plot in (a) is based on data for binding of diphtheria
toxin to an antigen from monkey (7). When redrawn as a residual
plot of differences between observed and calculated values against
the same abscissa, as in (b), the systematic trend becomes far more
obvious. According to the original article “the data were fitted by
regression analysis.”
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that computation alone provides no guarantee against
reaching an obviously incorrect conclusion. The results
of statistical analysis always need to be inspected by
eye. Nonetheless, it is less easy to find current examples
than it was 10 or more years ago, but it would be unwise
to conclude from this that the problem illustrated in
Fig. 1 now occurs less frequently than it did. On the
contrary, it may well be much more frequent than it
used to be, but is becoming less visible as a consequence
of the increasing (and disquieting) practice of pre-
senting derived kinetic parameters without any pri-
mary data to illustrate them. Such parameter values
are often supported by only very brief and uninforma-
tive indications of how they were calculated, such as “all
the kinetics of hydrolysis were fitted to the hyperbolic
Michaelis–Menten equation” (12) or “steady-state ki-
netic parameters were calculated fitting the data using
the GRAFIT program” (13).

Even more disquieting, it is increasingly common
that papers not only report no primary data but also
report no secondary data either. For example, in a re-
cent study of a sialyltransferase (14) the parameters
were obtained by analysis of progress curves, but no
progress curves (the primary data) are illustrated; not
only that, no rate data (the secondary data) are illus-
trated either; all that are shown are numbers derived
from rate data derived from progress curves by applica-
tion of commercial graph-drawing software that hap-
pened to include a curve-fitting function. There was
nothing to suggest the use of reliable methods for analy-
sis of progress curves, such as those discussed else-
where in this issue (15). If one compares not the gross
numbers of clearly faulty graphs published but their
proportions to the total amount of primary data pub-
lished there is no suggestion of a gradual improvement.
We return to this point in the discussion of the Scatch-
ard plot at the end of this article.

When assessing derived results that are already pub-
lished without any primary data there is little the criti-
cal reader can do apart from exercising healthy skepti-
cism about any conclusions drawn. When primary data
are available, however, residual plots provide a power-
ful tool for reaching a rapid (but of course preliminary)
opinion about the validity of the interpretation.

Choice of Coordinates

The ordinate in a residual plot is normally the

weighted difference w0.5( y 2 ŷ ) between the observed
value y of some quantity (such as an initial rate) and
the value ŷ calculated from the model that is considered
to describe the data. The weight w0.5 is the square root
of whatever weight w was considered appropriate for y
when fitting the data by least squares. If the y values
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were equally weighted then the simple difference
( y 2 ŷ ) can be plotted as the ordinate variable. This
choice is appropriate even if the data are weighted if
one is trying to judge what weighting system should be
used (see the description of Fig. 2b below).

The abscissa variable can be any variable that is not
expected to be correlated with the ordinate variable.
With a correctly chosen model correctly fitted there
ought to be no relationship between the residual
w0.5( y 2 ŷ ) and the true value of y, a point that is
amplified in the next paragraph. This true value is
unknown except in a simulated experiment, but it can
be represented by the calculated value ŷ, and so ŷ is
often a good choice for the abscissa variable. It is an
especially good choice for assessing the validity of the
weighting scheme, but it is not the only choice. For
example, to check for any unwanted dependence of the
results of an experiment on the progressive deteriora-
tion of a stock solution it is appropriate to choose the
time elapsed after preparation of the stock solution as
the abscissa variable. Note that in general there is no
requirement for the abscissa variable to be one that
played any role in fitting the data.

If a correlation does exist between w0.5( y 2 ŷ ) and
the abscissa variable, and if the abscissa variable is ŷ
or one of the independent variables used for fitting the
data, the correlation will inevitably be nonlinear; i.e.,
any trend in the residual plot will follow a curve. Even
if a completely (and even obviously) wrong model has
been fitted the mechanics of least-squares regression
will eliminate any linear correlation and ensure that
the mean displacement of the points from the abscissa
axis is zero. This is exactly true if a linear model has
been fitted by least squares, but it is also likely to be
true within the limits of detectability by eye if a nonlin-
ear model has been fitted or if the fitting has been done
by a method other than least squares. Inspection of a
residual plot is normally therefore a matter of looking
for nonlinear trends.

For simplicity in discussing examples of residual
plots we can assume that unless otherwise indicated
the ordinate variable is w0.5( y 2 ŷ ) and the abscissa
variable is ŷ.

Characteristic Residual Plots

Figure 2 shows a selection of characteristic appear-
ances that a residual plot may have. In each of the first

eight cases (Figs. 2a–2h) the gray shading imposes an
interpretation of trend, if any, in the data points. The
subjectivity or otherwise of this interpretation is dis-
cussed below in the context of Fig. 2h. For the moment
we shall assume that the gray shading provides a valid
picture of the underlying trend.
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In Fig. 2a the points are scattered in a parallel band
symmetrically placed about the horizontal axis and
evenly distributed in both dimensions. Although a
small proportion of points may lie outside the main
band none of them is far outside it. In an experiment
with a very large number of observations one expects
the points to be more concentrated near the axis, but
this may not be obvious with fewer than about 50 obser-

vations. This plot illustrates the ideal: it does not of

FIG. 2. Representative examples of residual plots in the presence of v
an interpretation of the arrangements of points. (a) Ideal case with n
resulting from fitting an incorrect model (cf. Fig. 1b for a real example
the information expected; (e) effect of excessive rounding of the valu
disturbance; (g) effect of the presence of an outlier, i.e., a single obse
presence of a weak systematic trend. (i) and (j) show the same points a
on the data, and the label is omitted and the axes shown in gray to p
large amount of extraneous information interferes with inspection of
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fitting. Figure 2b shows a typical result of inappropriate
weighting, for example, if w0.5 were set to 1 when it
would have been appropriate for it to be a decreasing
function of the abscissa variable. There is nothing here
to suggest that the model itself is inappropriate, but it
should still be checked after fitting the data again with
appropriate weights, because any systematic trend will
be more visible in the residual plot if there is no accom-

panying problem with the weighting.
Figure 2c is perhaps the most important case forcourse prove that the data are correctly interpreted and
the correct model fitted, but it provides no immediate discussing model discrimination, and is typical of the

results one obtains when the wrong model has beenreason to doubt this.
The parallel nature of the band in Fig. 2a suggests fitted. Although one may feel that the trend, and hence

the lack of fit, is so obvious that one hardly needs athat the observations were correctly weighted during
arious kinds of anomaly. In plots with shading the shading represents
o anomaly; (b) effect of inappropriate weighting; (c) systematic trend
); (d) effect of using a poor experimental design incapable of supplying
es in the primary observations before analysis; (f) effect of a periodic
rvation with very large error; (h) effect of a moderate outlier in the
s (h): in (i) the shading is omitted to avoid imposing an interpretation
lace essentially all the emphasis on the data; in (j) the presence of a
the arrangement of points.
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interesting information in the experiment. Perhaps
ERROR DETECTION I

residual plot to illustrate it, there are two reasons why
this is too optimistic. First, many plots are published
where the trend is even more obvious than it is here;
for example, in Fig. 1 all of the dispersion is systematic,
with no random scatter even when the residuals are
plotted, and one can only suppose that the question of
whether the right model had been used was not even
asked. The advantage of the residual plot here is that
it converts a strong suggestion into a result that cannot
be missed. The second point is that sometimes one may
have very accurate data that appear in the primary
plot to fit the model very precisely, even though there
is a systematic trend; in such a case, discussed further
below in relation to Fig. 3, a trend that may pass unno-
ticed in the primary plot becomes obvious in the resid-
ual plot.

Figure 2d may also illustrate a case of a systematic
trend, but here it is largely obscured by a poor experi-
mental design. If the two points at lowest ŷ are ignored
the others could be taken to suggest a weak decreasing
dependence of residual on ŷ, but if they are included
they suggest a more complex dependence. The question
can be resolved only by repeating the experiment with
some observations between the two groups. Although
in such a case one could argue that the poor design
ought to be detected in the primary plots, the residual
plot again converts a strong suggestion into something
that cannot be ignored. Here even a primary plot repre-
sents a major advance over a table of numbers, which
can usually be arranged with little difficulty in such a
way as to conceal any deficiencies in the data.

Figure 2e illustrates a much less common problem,
but one that is still worth mentioning not for its own
sake but to make the point that residual plots magnify
and make obvious even anomalies that are completely
unexpected and not described in standard textbooks.
In this case the distribution of points along a curve with
several saltuses is characteristic of a residual plot in
which overaggressive rounding before analysis pro-
vided the major source of error (16). It also illustrates
the danger of assuming that the software built into a
scientific instrument is of a quality to match the engi-
neering precision of the instrument itself.

Figure 2f illustrates a periodic effect on the residuals.
If the abscissa variable is ŷ it may not be obvious how
a direct periodic effect of ŷ on the residuals could arise,
but it could still happen if the experiment was designed
in such a way that the measured y values decreased

(or increased) monotonically during the course of the
experiment and the periodic effect was caused by some
environmental variable that fluctuated with time.

Figure 2g illustrates that if one outlying residual is
numerically much larger than all the others it becomes
possible to include it in the plot only if the scale is
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chosen so that most of the points are compressed close
to the axis, thereby obscuring any trend that they may
follow. In this case the first essential is to try to find a
cause for the large residual. If it can be assigned to a
simple mistake when recording the data, such as omit-
ting a decimal point when writing down a number, then
the mistake can be corrected. However, unless such a
cause is definitely established one should never discard
the possibility that the residual contains the principal
there is a genuinely important departure from simple
behavior over a limited range of conditions that ought
to be investigated more closely. In the case of Fig. 2g
there is no suggestion of anomalous behavior in the
neighboring points, so such an interpretation may seem

FIG. 3. Model discrimination with the aid of residual plots. Two

models for the time course of product release in the reaction catalyzed
by phosphoribulokinase are almost indistinguishable when compared
as ordinary plots, but for the model treating complexed phosphoribu-
lokinase as inactive (a) the residual plot shows clear evidence of
systematic error, whereas for the model assuming the complex to be
active (b) it does not. Reproduced, with permission, from Fig. 1 of
Lebreton and Gontero (17).
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unlikely; more generally it is unlikely in simple enzyme
kinetics because nothing in what we know about how
enzymes behave leads us to expect large deviations from
simple models over small ranges of conditions.

To this point we have been assuming that only one
effect at a time will cause a residual plot to differ in
appearance from Fig. 2a, but the reality will usually
be more complicated and several effects may be simulta-
neous and superimposed. Moreover, the systematic
trend underlying the data may be less obvious than it
is in Fig. 2c (and hence much less obvious than it is in
Fig. 1b). Figure 2h thus illustrates a combination of
a weak suggestion of a nonlinear trend with a weak
suggestion of an outlier. In such a case the appearance
of the plot is much more suggestive than conclusive,
suggesting further experiments to be done before a de-
finitive interpretation is possible. A weak suggestion of
a systematic trend in the residuals indicates that the
experimental design should be revised so as to accentu-
ate the trend, if it exists, for example, by extending the
range of the experiment or by making more observa-
tions in the region of design space where the trend is
most evident. Increasing the experimental precision
will always help, of course, but this is rarely a useful
suggestion as normally the experiments will have been
done as accurately as possible already.

In each of Figs. 2a–2h the gray shading represents
an interpretation that will not be visible in the data
when first plotted, and although such shading is useful
in the context of a methodological discussion like this
one or an educational article, in the research context
it is usually better to omit shading as it strongly biases
the eye. Compare Figs. 2h and 2i, for example, which
show exactly the same data with and without shading.
The relatively weak effects visible in Fig. 2h appear
even weaker in Fig. 2i. They appear weaker still in Fig.
2j, which again shows exactly the same points, but here
this is because the data are accompanied by a large
amount of extraneous information that just confuses
attempts to discern the pattern of points around the
axes. In general all of the extra information is redun-
dant in a residual plot; if one needs to record it some-
where for future reference or for publication, it is better
to place it in a separate legend and not superimposed
over the data.

Thus Fig. 2i shows how to display the data with a
minimum of irrelevance. Even the label (i) is omitted,
so one recognizes it as Fig. 2i by the fact that it is placed

between Figs. 2h and 2j. More generally one can use
expressions like “bottom right” rather than labels. If
possible, and as also illustrated in Fig. 2i, it is best to
show the axes in light gray or pale blue, so that they
do not dominate the data but are visible if one wants
to know where they are.
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A practical example of the use of residual plots to
discriminate between models that generate very similar
curves (17) is illustrated in Fig. 3. The two curves are
almost indistinguishable by eye, and in the absence of
the residual plots one might well be inclined to accept
the curve in Fig. 3a as a good fit to the data. However,
the inset residual plot reveals a very obvious systematic
trend, whereas the corresponding residual plot in Fig.
3b shows a slight suggestion of the effects of rounding
error but no clear systematic trend. The residual plot
allowed the authors to make a convincing case for a
significant contribution of an enzyme–enzyme complex
to the total reaction observed even though this contribu-
tion was too small to be detected in the conventional
plot.

Moderating the Effect of an Outlier

An outlier such as that in Fig. 2g (reproduced without
the shading as Fig. 4a) presents the problem of how to
display the other residuals in such a way that any trend
is apparent, because if a linear scale is used the nonout-
liers will be compressed against the abscissa axis in
such a way that it becomes difficult to perceive how
they are distributed. If the scale is expanded so as to
reveal the arrangement a large amount of space needs
to be wasted if the outlier is to remain within the range
of the graph. The most obvious solution is to place the
outlier off-scale (effectively omitting it), as in Fig. 4,
but this may be dangerous in case the outlier contains
real information, and in general it is best to include all
the data in any plot. An alternative is to use a “stabiliz-
ing transformation” that smoothly adjusts the largest
values while having very little effect on most of them.
In a residual plot the arctangent function has an appro-
priate stabilizing effect, because if x is measured in
radians, arctan (x) is within a few percent of x if x is
in the range 20.6 to 10.6, but remains within the range
21.6 to 11.6 even if x approaches infinity (Fig. 4c). This
means that even very large residuals can be kept on-
scale without greatly distorting the pattern of the
others.

The main complication in this approach is that the
residuals need to be scaled before calculating their arc-
tangents, as otherwise the results will be arbitrarily
dependent on the units of measurement. Any scaling
that ensures that nearly all the values are in the range

20.6 to 10.6 will be satisfactory; a practical choice is
to define m as the mean of the absolute values .x. of a
series of residuals x and plot arctan (x/2m) in the resid-
ual plot. The effect of this on the data of Fig. 4a is
shown in Fig. 4d; note that the largest residual remains
on-scale (and would do so even if its value were much
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is expanded a large amount of space would be wasted if the most
deviant value were not omitted from the plot. (c) The function arctan
(x) has the property that it differs very little from x if x is in the
range 20.6 to 10.6 but remains finite and small even if x is very far
outside this range. (d) As a result, the arctangent transformation
defined in the text allows all the residuals to be plotted while allowing
any information contained in the smaller residuals to remain visible.
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larger than that used), but the arrangement of the oth-
ers differs little from that seen with a linear scale,
as in Fig. 4. Note also that the outlier remains easily
recognizable as an outlier, i.e., that the large distortion
in its magnitude does not incur any danger that it will
be confused with the other observations.

The arctangent transformation may be tedious to
apply manually, of course. However, this presents no
problem for a computer program that draws residual
plots automatically (as any serious data-fitting pro-
gram ought to do), as the computing effort is trivial.

Residual Plots with Sparse Data

It often happens, especially when trying to assess the
credibility of data in the literature, that the number
of observations in each plot is too small to permit a
meaningful conclusion. Even such an obvious trend as
that illustrated in Fig. 1, with only seven points, could
conceivably be due to random scatter and not to a real
lack of fit. It would be sufficient for just one point to
be in a significantly different position (e.g., moving the
third point in the residual plot to its mirror position
about the x axis) for the trend that appears so unequivo-
cal in the plot as it stands to be called into question.

Consider for example the three sets of points in the
upper part of Fig. 5, which is based on results from a
kinetic study of the proteolytic enzyme napsin (11). The
fact that all of the triangles lie on the same side of the
line that is supposed to fit them is noticeable, but by
itself it means very little, as there is a probability of
12.5% that four random values from a symmetrical dis-
tribution will have the same sign. However, when all

of the 12 residuals are plotted together, as in the lower
ERROR DETECTION I

FIG. 4. Effect of an outlier on a residual plot. (a) The top part of
the figure reproduces the data of Fig. 2g with the shading omitted.
The presence of one large residual means that it can be plotted on
a linear scale only if all the others are compressed against the abscissa
axis, making any systematic pattern difficult to detect. (b) If the scale
part of Fig. 5, it is seen that now we have 11 negative
deviations and one of about zero, an arrangement that
is much more difficult to dismiss as a chance fluctuation
and makes it clear that the lines drawn could not have
been best-fit lines.

DETECTING ENZYME INACTIVATION

During the period when the basic methods for study-
ing enzymes were being developed, during the first
three-quarters of the 20th century, most work was done
with natural enzymes or with enzymes that had been

subjected to minimal modifications. Under these condi-
tions it was reasonable to assume that enzyme struc-
tures had been selected during evolution to be suffi-
ciently stable in the cell to fulfill their physiological
functions (though not necessarily under conditions that
can easily be produced in the assay). This does not
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mean, of course, that all natural enzymes are as stable
as, say, ribonuclease, which is certainly not the case,
but it does mean that with care one can hope to find
conditions under which there is little or no loss of activ-
ity during the course of an experiment.

In the increasingly frequent studies of artificial mu-
tant variants of enzymes no such comforting assump-
tions have much validity. These proteins have not expe-
rienced natural selection for stability, and there is no
basis for thinking that they can survive the conditions
of an assay without loss of activity. On the contrary,
mutant enzymes are often less stable than their wild-
type counterparts. For example, recent studies by circu-
lar dichroism of mutant forms of a mouse protein re-
lated to carbonic anhydrase showed considerable varia-
tions in stability and three-dimensional structure
among proteins of similar catalytic activity (18).

It follows that testing for progressive inactivation

should be a routine procedure in any study of a mutant

FIG. 5. Pooling data from multiple sources into a single residual
plot. The plot shown at the top is based on a study of inhibition of
napsin by pepstatin (10), and as each line contains only four data
points it is difficult to draw any conclusions if they are considered
one at a time. Combining all the data into a single residual plot, shown
below, makes it clear that virtually all of the deviations are negative.
SH-BOWDEN

assay that might be trivial or nonexistent for the native
enzyme on which the assay was developed.

One type of information about stability and homoge-
neity may come from determination of the active site
molarity of an enzyme, as described by Brocklehurst
and colleagues in this issue (19), but here we are
concerned with simple techniques that can be applied
routinely without requiring special equipment or
knowledge.

Fortunately an easy test for inactivation has been
known for many years, though rather infrequently ap-
plied. Building on observations from the beginning of
the 20th century (20, 21), Selwyn (22) developed the
modern form of the test, after pointing out that under
normal assay conditions with a large excess of sub-
strates over enzyme most mechanisms can be described
by a rate equation of the type

dp
dt

5 e0 f( p), [1]

in which p is the concentration of product after time t,
e0 is the total enzyme concentration, and f is a homoge-
neous function of p that can (in principle) be derived
from the rate equation. The fact that it may be difficult
to derive and rather complicated (because all other con-
centrations need to be expressed in terms of p by means
of stoichiometric relationships) is not important. The
equation can be integrated as follows:

e0t 5 # dp
f( p)

. [2]

The solution to the integral on the right-hand side does
not need to be known. It is sufficient to know that it
does not depend on e0, and thus has exactly the same
dependence on p at all values of e0. Experimentally, this
means that plots of p against e0t should be superimpos-
able if the starting assumptions are true. An example,
based on results of Michaelis and Davidsohn (21), is
illustrated in Fig. 6. Even though the progress curve
appears not to pass through the origin (though the rea-
son for this should be clear from inspection) and to show
some sigmoidicity, the points obtained at three different
enzyme concentrations all lie on the same curve.

As Selwyn (22) discussed, there are various reasons
why the results from such an experiment might differ
or modified enzyme, especially when establishing corre-
lations between structure and function. For such stud-
ies to be valid it is important to know whether a lower
measured activity is due to a genuinely decreased activ-
ity or simply to problems due to inactivation during the
from those in Fig. 6. The simplest is that the enzyme
loses (or gains) activity during the assay, which would
make it invalid to treat e0 as a constant during the
integration. More complex problems would arise if the
rate was not strictly proportional to the total enzyme
concentration, which would happen, for example, if the
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enzyme existed in two or more states of association
(monomer, dimer, and tetramer, for example) in equilib-
rium with one another and with different catalytic ac-
tivities. Deutscher (23) described an example of this,
and his results are reproduced in a discussion of Sel-
wyn’s test elsewhere (24). From the point of view of
checking the validity of an assay and for the stability
of the enzyme the essentials are to check that the points
from different enzyme concentrations fall on the same
curve, as in Fig. 6, and to investigate possible causes

if they do not.
Here we have been concerned with one of the simplest
kinds of information available from the time course of
an enzyme-catalyzed reaction. As Duggleby (15) dis-
cusses elsewhere in this issue, however, quantitative
analyses of time courses can provide considerably more.

A CASE STUDY IN FAULTY GRAPHIC
TREATMENT
Scatchard and Eadie–Hofstee plots

FIG. 6. Checking for enzyme inactivation during an assay. If the
assumptions needed for an enzyme assay to be valid are true, plots
of accumulated product against time multiplied by the total enzyme
should yield points that lie on a single curve regardless of the enzyme
concentration at which the assays were carried out. The example is
based on data for invertase (19) that satisfy this criterion, for three
invertase concentrations in the ratio 0.4(m):1(v):2(m).
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all modern journals rightly refuse to allow this, but
there is a large difference between including all of the
primary data in a paper and including one or two exam-
ples to illustrate the quality of the experiments and to
allow the reader to form an impression of whether the
analysis was correctly done.

Worries about lack of primary data in the modern
literature might be unfounded if there were abundant
evidence that the great majority of experiments were
analyzed appropriately, but unfortunately this is not
the case. The Scatchard plot for studying ligand binding
to proteins is a revealing example. Essentially the same
points apply to the Eadie–Hofstee plot for analyzing
enzyme kinetic data, and in this account the term
Scatchard plot is taken to apply to both.

Some years ago we examined a considerable number
of papers published in major biochemical journals
around 1993–1994 that presented Scatchard plots in
which the data points could not be interpreted as
straight lines. Of these, around 30% used computa-
tional methods and included sufficient evidence to sug-
gest that they had been applied appropriately and cor-
rectly. The majority, however, used graphic methods in
ways that were demonstrably incorrect and likely to
produce significant errors both in the qualitative inter-
pretation of the data and in the values of any binding
or kinetic constants estimated. The commonest error
was to draw a straight line through points that obvi-
ously demanded a curve (as in Fig. 1, which shows a
more recent example of this error), but it was also com-
mon to draw two straight lines and then analyze these
separately as if each had been obtained in a separate
experiment in which the points lay on a straight line.
We only encountered one paper (25) in which nonlinear
Scatchard data were analyzed by means of a valid
graphic method, that of Rosenthal (26). This method
uses the property that when the observed binding is
the result of binding at several different sites the effects
in the Scatchard plot are additive along lines drawn
through the origin, as discussed and illustrated in more
detail elsewhere (24). By contrast, the approach of
treating two straight lines as if they had been observed
separately leads to gross errors.

The point here, however, is not to discuss in detail

how the Scatchard plot should be used, but to use it as
Earlier this article referred to the increasing ten-
dency in the literature to conceal primary data from
the reader by giving only the final results of the data
processing. Of course, the literature would be impossi-
bly unwieldy if all primary data were published, and
an example to illustrate the very frequent misuse of
graphic methods in modern biochemical work and as a
warning not to assume that conclusions derived from
unseen primary data have been reached by a valid
route.



ATHEL CORNISH-BOWDEN190
CONCLUDING REMARKS

The near-universal use of computing in the modern
laboratory has encouraged the view that any approach
to data analysis other than a completely automated
one is outdated. However, this ignores the fact, well
recognized in the statistical literature, that the eye is
much better at detecting anomalies than any computer
program, which can test only for conditions that have
been foreseen by the programmer. Some graphic proc-
essing of experimental data will therefore remain es-
sential for the foreseeable future. Plotting residual er-
rors rather than direct observations provides a very
powerful way of focusing attention on the degree of
agreement between an experiment and any proposed
interpretation of it, and thus helps to ensure that sig-
nificant discrepancies do not pass unnoticed.
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